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Abstract— Data warehouses are currently form a good basis of 

decision support systems. The main characteristics of these data 

warehouses are their large size and complexity of its decision-support 

queries. Many optimization techniques have been proposed to reduce 

the execution cost of these queries (indexes, materialized views, 

partitioning, etc). Several research works have been proposed in the 

literature to handle the selection problems of these techniques during 

the physical design phase, using heuristics: meta-heuristics, linear 

programming, data mining techniques, etc. We focus in this paper on 

combined selection of horizontal partitioning and bitmap join 

indexes. All the proposed approaches use algorithms to share 

attributes between these two techniques. We show in this paper that 

the approaches based on attributes sharing can ignore some 

interesting solutions. We propose, in this paper, a new approach 

based on data mining techniques. It consists of sharing queries 

between horizontal partitioning and bitmap join indexes. Each subset 

of queries will be exploited by the suitable optimization technique to 

select the appropriate optimization configuration. The queries sharing 

allows the pruning of the search space and the reduction of the 

complexity of selection problems. To validate our approach, we 

conducted an experimental study on a real data warehouse under the 

Oracle 11g DBMS. We have also compared our approach with a 

state-of-the-art work. 
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I. INTRODUCTION 

A data warehouse stores large amounts of consolidated and 

historical data. It is specially designed to answer complex 

decision-support queries [12]. Those queries involve several 

complex join and aggregates operations at the same time 

which induce an expensive execution cost. To improve the 

performance of these queries, the data warehouse 

administrator has to select during the physical design phase 

one or multiple optimization techniques. Several techniques 

have been proposed such as: materialized views [24], index 

[10], horizontal Partitioning [18], etc. Horizontal Partitioning 

(HP) and Bitmap Join Index(BJI) are two widely used 

techniques in recent years for data warehouse optimization. In 

[3], authors show that HP and BJI are two similar techniques 

since they optimize star join operations and share the same 

resource: the selection attributes which are the non-key 

attributes of dimension tables. However, the isolated selection 

of HP and BJI doesn't allow exploitation of the similarities 

between these two techniques. Indeed, the selection of each 

technique is NP-hard problem [4] [9] and their combination 

increases the complexity of the problem. In the literature, few 

works are dealing with the combined selection of HP and BJI 

have been proposed [20] [7] [6] [16]. All these approaches are 

based on sharing selection attributes between HP and BJI. Our 

idea is to focus on the queries workload since we aim to 

optimize it. We propose to share queries between HP and BJI, 

according to specific criterion. We aim by this sharing to 

reduce the size of the input query workload for each selection 

process, and thereby it will be possible to significantly prune 

the selection problem.  

The authors in [29] have assert that the execution time of 

physical design tools such as Microsoft Tuning Wizard and 

DB2 Index Advisor increases exponentially with linear 

increase in the size of the query workload. Therefore, the 

number of queries has an impact in the physical design phase 

[8]. However, data mining techniques are being used currently 

to reduce the complexity of selection problems and improve 

scalability, therefore we propose in this paper to use data 

mining techniques in HP and BJI selection problem. The paper 

is organized into six sections. We formalize in Section 2 the 

HP and BJI selection problem. We present in Section 3 

existing related work to solve this problem. In Section 4 we 

present our new approach and then we experimentally study 

its efficiency in Section 5. We conclude the paper in Section 6.   

II. HP AND BJI SELECTION PROBLEM FORMALIZATION 

The horizontal partitioning and bitmap join indexes selection 

problem can be formulated as follow:  

For a given data warehouse with a set of d dimension tables 

D={D1,D2,...,Dd} contain qualitative data, a fact table F 

contains foreign keys of the dimension tables in addition to a 

set of collected measures, and a query workload Q = 

{Q1,Q2,...,Qm}. Let's consider the thresholds S and W where S 

is the storage space quota for indexes and W represents the 

maximum number of fact fragments. 

HP and BJI selection problem consists in selecting a HP 

schema (PS) and BJI configuration (IC) that optimize the 

execution cost of the workload Q with Size(IC)≤ S and N(PS)≤ 



W where Size(IC) and N represent the disk space occupied by 

IC and the number of fact fragments respectively. 

Based on this formalization, we note that this problem is a 

combination of two difficult sub problems: index 

configuration and partitioning schema selection (which are 

known as NP-hard problems [4] [9]). 

III. RELATED WORK 

Most existing works propose isolated selection of HP [4] [2] 

[21] [11] or BJI [1] [5] [28] [14] [26] [27]. Select one 

technique is generally insufficient since some categories of 

queries are not optimized with this selection. Therefore, few 

research studies are dealing with simultaneous index and 

horizontal partitioning selection [20] [7] [6] [16].  

Stohr et al. [20] propose a combination of horizontal 

partitioning with bitmap join index and parallel processing for 

the design of parallel data warehouses. Their approach 

requires only one attribute per dimension table to be used in 

the partitioning of the fact table. The BJI selection is done on 

HP unused attributes. This fact results a large number of 

candidate indexes. 

 In [7], the authors propose to use HP to prune the search 

space of BJI selection problem. Their proposal consists of 

starting by partitioning the data warehouse, and then selecting 

the BJI set to optimize the queries that do not get benefit from 

HP (called non benefit queries).  

Bouchakri et al. [6] propose to use the clustering algorithm k-

means to share all selection attributes extracted from the query 

workload between HP and BJI and then select each 

optimization technique with a genetic algorithm.  

Finally, the authors in [16] have proposed a combined 

selection of HP and BJI based on multi-agent system. Their 

approach is composed of set of agents. One of those agents is 

responsible to share the selection attributes between the 

optimization techniques based on the work of [6]. The 

selection of each technique is provided by a set of agents using 

a genetic algorithm.  

 

Existing studies related to HP and BJI are consisting to assign 

each candidate selection attributes to a single optimization 

technique at once. However, this strategy may leads, in some 

cases to insufficient optimization. To illustrate this, we 

suppose a data warehouse start schema composed of fact table 

Sales, and three dimension tables: Product, Customer and 

Time. Let's assume that we partition the table Customer into 

two partitions according to the attribute City as follow:  

 Customer1=σ(City=Ouargla)(Customer) 

 Customer2=σ(City≠Ouargla) (Customer)  

Then we partition the table Sales into two partitions 

(referential partitioning):  

 Sales1=Sales ⋉ Customer1  

 Sales2=Sales ⋉ Customer2  

 

Where ⋉ represents the semi-join operator. Let's suppose that 

the partition Sales1 contains 10% of Sales tuples and Sales2 

contains the rest (90%). Let's suppose a query containing the 

predicate City='Oran', where 'Oran' is another city and 5% of 

sales that have been sold to customers living in 'Oran'. To 

execute this query, all tuples of the partition Sales2 must be 

loaded in memory (90% of Sales tuples), which will generate a 

high cost. To reduce it, it will be interesting if we select a BJI 

index on the attribute City. Using this index, only tuples 

referencing the city 'Oran' are loaded (5%). In all related work 

cited above, if the attribute City is used to fragment the data 

warehouse, it cannot be used in BJI selection process. These 

approaches concentrate on the selection attributes to optimize 

the queries workload. We believe that it will be important to 

focus on queries and not attributes by sharing them between 

HP and BJI in order to define the best technique to use for a 

given query according to some factors. In addition, our 

approach allows the use of the same attribute to fragment and 

index the data warehouse at the same time in order to improve 

the performance, which is impossible in existing works.   

 

IV. OUR APPROACH 

 

We propose, in this paper, a new approach for the combined 

selection of HP and BJI using data mining techniques. The 

general architecture of our selection process is shown in 

Figure 1. 

 
 

Figure1: Our approach architecture 

 

Our approach is based on the classification of queries. It 

consists of sharing the global query workload Q, with 

unsupervised classification algorithm k-means, into two sub-

workloads named: HP_Workload and BJI_Workload. The 

classification weight is calculated from two criterions: the 

cardinality of selection attributes and the query selectivity. 

We'll present in the following sections the detail of our 

approach. 

A. Query workload classification 

In order to share the query workload between optimization 

techniques HP and BJI, we have used the algorithm k-means 

for unsupervised classification (clustering). This algorithm 
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uses, a distance such as the Euclidean distance as an intra-

class distance. Depending on the number of iterations, k-

means recalculates the two centers and reassigns every query 

to the suitable class according to the distance. To adapt this 

algorithm to our need, we have considered the following: 

 The data to classify are the queries of the query 

workload Q. 

 Parameter k of k-means is fixed to 2.  

 Queries are classified into two classes: BJI_Workload 

and HP_Workload. 

 The queries are represented in two-dimensional 

space. There coordinates are based on a classification 

weight to determine for each query, if it will be 

optimized by HP or BJI. 

 

The weight of a given query Qi is based on two important 

factors: the cardinality of selection attributes (CAR) and query 

selectivity (SEL). The classification weight is given by 

formula below: 

Weight(Qi)= CAR(Qi) + SEL(Qi) 

Attributes Cardinality CAR: It represents is the sum of the 

cardinalities of the selection attributes used in Qi. 

               

 

   

 

Where ||Ai|| represents the cardinality of the attribute Ai and m 

is the number of selection attributes in Qi. The cardinality of 

an attribute is a very important factor for the selection of a 

BJI. Depending on it, indexing may be more or less efficient. 

If the cardinality is very large, an index degenerates toward a 

sequential scan (of the index structure itself) [22]. For this, we 

considered that if the sum of a query attributes cardinalities is 

small, the BJI are more appropriate to optimize this query. 

Otherwise, the HP is better. 

 

Query Selectivity (SEL) : It represents the fraction of selected 

table tuples during the query execution. In this paper, we focus 

on selectivity of queries on the fact table. Let us consider the 

query Q1 introduced a simple selection predicate as follows: 

 

Q1: Select Count (*) From Sales S, Product P Where S.Pid = 

P.Id And P.Brand ='BMW'. 

 

The selectivity of Q1 is related to the predicate 

P1(P.Brand='BMW'). It is equal to the number of tuples of the 

fact table Sales that involve the predicate P1. The general form 

of the calculation of a given predicate selectivity Pi sets to a 

dimension table Dj and required a join operation between Dj 

and the fact table is given by: 

Sel(Pi)= 
                

     
 

Where: ||F|| represents the number of tuples of the fact table F. 

Let's suppose that the number of selected rows is 71600 tuples 

and the size of the fact table Sales is ||Sales|| = 6 millions. The 

selectivity of Q1 is equal to: 

SEL(Q1)=Sel(P1)=
               

         
 

     

         
      

In the example above, we have calculated the query selectivity 

if it contains a single selection predicate of the form Ai = 

value. In the case where Qi contains several selection 

predicates (which is the case for star join queries), the 

selectivity is depending on the operators connecting these 

predicates. The majority of RDBMS consider that if the 

conditions in a query are independent, the selectivity of each 

condition can be calculated separately. This logic works 

globally if the attributes are independent but when they are 

correlated, the results are wrong. Note that this problem can be 

avoided with the use of dynamic sampling[13]. 

The indexes provide a best gain in queries with high 

selectivity because they select a small number of tuples, and 

therefore access to a high number of tuples is avoided. We 

conclude that queries with high selectivity encourage 

indexing. However, queries with a low selectivity encourage 

partitioning. 

We have noticed that the values for each factor had a different 

scale. For the criteria CAR, which represents the attributes 

cardinality, let's suppose that the cardinality of the attribute 

City is 60. However, the query selectivity is expressed as a 

value between 0 and 1. The direct sum of these two factors 

shows that CAR is the dominant factor. To get the 

classification weight consistent, we have performed a 

normalization of values. We propose to transform each factor 

values so they follow the standard normal distribution with 

average 1 and standard deviation 0. Let's consider G to be a 

sample composed of  1,  2,..., n. Each element of G is 

calculated as follow: 

  
    

 
 

Where: m is the average and e is the standard deviation 

formulated as: 

  
    

   

 
 

 

e=  
 

 
      

       

For example, let's consider a set of query {Q1,.....,Q10} 

chosen randomly form our query workload, the calculation of 

their weight is presented in table 1. 

 
Query Selectivity 

(SEL) 

Cardinalities 

sum(CAR) 

Normalized 

SEL 

Normalized 

CAR  

Weight 

Q1 0.058 12 -1.75 -1.94 -3.69 

Q2 0.29 4 4.65 -2.067 2.588 

Q3 0.22 6 2.739 -2.03 0.70 

Q4 2.98E-5 182 -3.36 0.697 -2.67 

Q5 3.68E-5 167 -3.36 7.45 4.085 

Q6 0.23 4 2.97 -2.06 0.909 

Q7 9.039E-5 121 3.365 -0.25 -3.61 

Q8 0.176 4 1.48 -2.067 -0.58 

Q9 0.245 4 3.367 -2.067 1.299 

Q10 4.172E-7 4,17 -3.368 4.346 0.978 

Table1: Queries weight calculation 



After applying the algorithm k-means, we have obtained two 

sub-worload: HP_Workload {Q2,Q3,Q5,Q6,Q8,Q9 ,Q10} and 

BJI_Workload {Q1,Q4,Q7}. 

B.  Partitioning schema selection 

To select the partitioning schema, we have used the approach 

proposed in [4]. It consists in extracting the selection 

predicates and then decompose the domain of each selection 

attribute into K sub-domains. The sub-domain Sdi where 

i={1...K-1} corresponding to the attribute values used by the 

workload (HP_Workload in our case). The last sub-domain 

Sdk corresponds to all remaining values. In addition, this 

strategy is based on a particular coding of partitioning schema 

where each partitioning schema is represented by a 

multidimensional array and each row represents an attribute 

and its sub domains. The value of each cell of a given array 

representing an attribute is within (1...ni), where ni represents 

the number of sub-domains of the attribute Ai. The cells with 

the same value will be grouped in the same partition. If all the 

sub domains of an attribute have the same value, the attribute 

will not participate in the partitioning process. Finally, a 

genetic algorithm (GA) is used to select a near-optimal 

partitioning schema. Each chromosome has composite genes 

and each composite gene contains n simple genes. A 

composite gene in our case represents all sub-domains of a 

selection attribute extracted from HP_Workload, whereas a 

gene is a sub-domain. 

The GA apply three genetic operations: selection, crossover 

and mutation, to transform the initial population of 

chromosomes, with the objective to improve their quality.  

The evaluation of a problem solution represented by a 

chromosome is performed with an objective function (fiteness) 

based on a cost model. This cost model is mainly based on the 

advanced model proposed by the authors in [4]. This model is 

used to calculate the number of Input/output needed to run a 

query. 

 
Algorithm 1:Genetic algorithm 

Begin 

1. Random generation of a population contains m chromosomes X 

2. Evaluation of each chromosome's fitness f(X) 

3. Create new population 

- Select 2 parents chromosomes  

- Crossovers the 2 parents with specific probability Tc to obtain 

2 children. 

- Select and mutate a chromosome with specific probability Tm. 

- Add new chromosomes to the population 

4. Compose the new population 

5. If the population isn’t sufficient repeat from step 2  

End 

C. Index set selection 

The BJI selection method we propose (see Figure 2) exploits 

BJI_Workload. It bases on closed frequent itemsets extraction 

technique. It involves three main steps: 

 Elaboration of the extraction context: A syntaxical 

analysis of BJI_Workload must be conducted in this 

step to extract the set of attributes in selection and 

join predicates. We build after that a "query-attribute" 

matrix whose rows and columns represent 

respectively queries of BJI_Workload and the 

extracted attributes. The j
th

 case of row i in the matrix 

is set to 1 if the query Qi uses the attribute Aj , and it 

is set to 0 otherwise. 

 Candidate indexes construction: To prune the search 

space of the BJI selection problem, we use the 

algorithms: Close [17], Charm [25], DynaClose [5], 

DynaCharm [5]. The algorithms Close and Charm are 

using to extract closed frequent itemsets (CFIs), 

whereas DynaClose, DynaCharm present an 

adaptation of Close and Charm respectively. We 

eliminate from the set of CFIs those that cannot 

generate a bitmap join index. For example, a CFI 

which does not contain non-key attribute of a 

dimension tables will be deleted. 

 Index set selection: We use, in this step, a greedy 

algorithm to scan the search space of candidate 

indexes under the storage space constraint S. The 

selection of the index set is based on the cost model 

proposed by Aouiche et al. in [1]. A candidate index 

I, will be added to the final BJI configuration if it 

minimizes the execution cost of Q. 

 

 
Figure2: BJI selection process 

 

V.   REFINING THE OPTIMIZATION 

In order to improve the optimization, we propose as a refining 

step to select an additional BJI configuration IC2 that 

optimizes the non-benefit queries of the partitioning schema 

PS. A query is called benefit of partitioning if his execution 

cost is significantly reduced after the partitioning. To quantify 

the cost reduction, we used a metric called reduction rate (R). 

This rate is calculated for a given query Qj as follows: 

 

      
                                                       

                           
            

We gave the possibility to the administrator to fix a threshold 

         ), from which he considered a given query benefit 

of the partitioning process or not. It can be formulated as 

follows: 
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It is very important to know if a query is benefit or not. When 

a query was a benefit query, the administrator considers that it 

is not necessary to apply an additional index selection to 

optimize here cost. 

 

The selection of IC2 must respect the space constraint S' 

where S'= S-Size(IC).This refining step allows making the 

most of the storage space devoted to indexes, and thus 

ensuring better optimization of the overall workload. 

 

VI.  EXPERIMENTAL STUDY 

 

To validate our approach, we have used a real data warehouse 

generated from the benchmark APB-1 release II [15] in 

Oracle11g. The star schema that we have identified from this 

benchmark consists of a fact table Actvars (24786 000 tuples), 

and four dimension tables: Prodlevel (9000 tuples), Custlevel 

(900 tuples), Timelevel (24 tuples) and Chanlevel (9 tuples). 

We used a query workload composed of 55 queries defined on 

12 selection attributes. To show the effectiveness of our 

approach, we conducted the evaluation of the following four 

approaches: (a) without optimization techniques, which we 

call WOT,(b) HPOnly: only HP is used, (c) BJIOnly: only BJI 

are selected without partitioning and (d) HP-BJI: our 

approach. We compare these scenarios with the work 

proposed by Bouchakri et al. [6] (noted as HP-BJI-B). This 

approach is based on selection attributes classification. We 

used in this approach the GA for HP schema selection and a 

greedy algorithm to select the BJI set. In our experimental 

study, we have used the Oracle Optimizer to estimate the real 

execution cost of the workload. The Optimizer uses Explain 

Plan statement to estimate the execution cost. For example for 

a given query Qi where: 

Qi: Select * From Table Where Attribute = 'Value'. It is 

possible to estimate the cost of execution of Qi through the 

following two SQL commands: 
 EXPLAIN PLAN SET STATEMENT_ID = 'Qi' FOR SELECT * 

FROM table WHERE Attribute = 'Value' 

 SELECT Cost FROM plan_table WHERE STATEMENT_ID = 

'Qi' 

 

The first command displays the execution plan chosen by the 

optimizer to execute Qi and then estimate the cost of execution 

of Qi. This cost is stored in the Cost column of the system 

table plan_table and it is extracted by running the second 

command. 

 

To validate our approach, we have conducted several 

experiments. In the first experiment, we varied W (maximal 

number of fact fragments) from 40 to 300. We used the 

algorithm Close [19] for BJI set selection because the 

experience shows that it presents the best results. For both HP-

BJI and HP-BJI-B, we fix the storage space's threshold S to 

1GB. Figures 3, 4 show respectively the results of these 

experiments and the cost reduction rate when executing the 

query workload for the approaches HPOnly, HP-BJI and HP-

BJI-B. 

The results indicated that our approach (HP-BJI) is more 

efficient than the other approaches. It is better than HP-BJI-B 

because of a large number of indexes that have been selected 

(7-9 BJI) for HP-BJI which represents more than half of the 

candidate indexes, while just (3-5) BJI are selected for HP-

BJI-B. 

 

 
 

Figure 3: Comparison of HP-BJI and HPOnly.  

 

This is due to the fact that HP-BJI-B does not take into 

account the indexes defined on the attributes used in the 

partitioning process. 

 

 
 

Figure 4: Cost reduction rate 

 

The results in Figure 4 have shown that we get an average 

performance gain of more than 71% for our approach, which 

is considered a significant improvement. 

 

 
 

Figure 5: HP-BJI vs BJIOnly. 
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We compared, in the second experiment, our approach with 

BJIOnly and HP-BJI-B. We set W to 200 and we varied S 

from 100 to 6000MB.The results presented in Figure 5 show 

that our selection process HP-BJI is more efficient than HP-

BJI-B and BJIOnly. For more than 800MB HP-BJI and HP-

BJI-B are getting stable. This is due in the fact that the greedy 

algorithm cannot select other BJI which can present an 

improvement to the workload execution cost. 

 

VII.  CONCLUSION 

 

We proposed in this paper a new approach based on data 

mining algorithms to reduce the complexity of HP and BJI 

combined selection's problem. The first data mining algorithm 

(k-means) is used to share the query workload into two sub-

workloads. Each sub-workload is assigned to an optimization 

technique process (HP or BJI) according to classification 

criterions. The algorithms Close [17], Charm [25] to extract 

closed frequent itemsets with DynaClose [5] and DynaCharm 

[5] are implemented to be used for BJI configuration selection 

in order to optimize the global workload's execution cost. We 

used also a genetic algorithm for HP schema selection. This 

algorithm has been widely used in data mining applications 

such as classification, clustering, feature selection, association 

rules [23], etc. To validate our approach, we conducted several 

experiments on a benchmark on Oracle 11g. The experimental 

results are encouraging and have demonstrated the 

effectiveness of our approach. To improve this work, we think 

to propose a dynamic approach that adapts to recurrent 

changes in the workload, the data or the problem constraints to 

ensure continuous optimization. 
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