
A data mining-based approach for data warehouse

optimisation

AMIRAT Hanane

Computer Sciences Department

University of Laghouat

Laghouat, ALGERIA

h.amirat@mail.lagh-univ.dz

BOUKHALFA Kamel

Computer Sciences Department

USTHB

Algiers, ALGERIA

kboukhalfa@usthb.dz

Abstract— Data warehouses are currently form a good basis of

decision support systems. The main characteristics of these data

warehouses are their large size and complexity of its decision-support

queries. Many optimization techniques have been proposed to reduce

the execution cost of these queries (indexes, materialized views,

partitioning, etc). Several research works have been proposed in the

literature to handle the selection problems of these techniques during

the physical design phase, using heuristics: meta-heuristics, linear

programming, data mining techniques, etc. We focus in this paper on

combined selection of horizontal partitioning and bitmap join

indexes. All the proposed approaches use algorithms to share

attributes between these two techniques. We show in this paper that

the approaches based on attributes sharing can ignore some

interesting solutions. We propose, in this paper, a new approach

based on data mining techniques. It consists of sharing queries

between horizontal partitioning and bitmap join indexes. Each subset

of queries will be exploited by the suitable optimization technique to

select the appropriate optimization configuration. The queries sharing

allows the pruning of the search space and the reduction of the

complexity of selection problems. To validate our approach, we

conducted an experimental study on a real data warehouse under the

Oracle 11g DBMS. We have also compared our approach with a

state-of-the-art work.

Keywords- Data warehouses, Physical design, Horizontal

partitioning, Bitmap join indexes, Data mining.

I. INTRODUCTION

A data warehouse stores large amounts of consolidated and

historical data. It is specially designed to answer complex

decision-support queries [12]. Those queries involve several

complex join and aggregates operations at the same time

which induce an expensive execution cost. To improve the

performance of these queries, the data warehouse

administrator has to select during the physical design phase

one or multiple optimization techniques. Several techniques

have been proposed such as: materialized views [24], index

[10], horizontal Partitioning [18], etc. Horizontal Partitioning

(HP) and Bitmap Join Index(BJI) are two widely used

techniques in recent years for data warehouse optimization. In

[3], authors show that HP and BJI are two similar techniques

since they optimize star join operations and share the same

resource: the selection attributes which are the non-key

attributes of dimension tables. However, the isolated selection

of HP and BJI doesn't allow exploitation of the similarities

between these two techniques. Indeed, the selection of each

technique is NP-hard problem [4] [9] and their combination

increases the complexity of the problem. In the literature, few

works are dealing with the combined selection of HP and BJI

have been proposed [20] [7] [6] [16]. All these approaches are

based on sharing selection attributes between HP and BJI. Our

idea is to focus on the queries workload since we aim to

optimize it. We propose to share queries between HP and BJI,

according to specific criterion. We aim by this sharing to

reduce the size of the input query workload for each selection

process, and thereby it will be possible to significantly prune

the selection problem.

The authors in [29] have assert that the execution time of

physical design tools such as Microsoft Tuning Wizard and

DB2 Index Advisor increases exponentially with linear

increase in the size of the query workload. Therefore, the

number of queries has an impact in the physical design phase

[8]. However, data mining techniques are being used currently

to reduce the complexity of selection problems and improve

scalability, therefore we propose in this paper to use data

mining techniques in HP and BJI selection problem. The paper

is organized into six sections. We formalize in Section 2 the

HP and BJI selection problem. We present in Section 3

existing related work to solve this problem. In Section 4 we

present our new approach and then we experimentally study

its efficiency in Section 5. We conclude the paper in Section 6.

II. HP AND BJI SELECTION PROBLEM FORMALIZATION

The horizontal partitioning and bitmap join indexes selection

problem can be formulated as follow:

For a given data warehouse with a set of d dimension tables

D={D1,D2,...,Dd} contain qualitative data, a fact table F

contains foreign keys of the dimension tables in addition to a

set of collected measures, and a query workload Q =

{Q1,Q2,...,Qm}. Let's consider the thresholds S and W where S

is the storage space quota for indexes and W represents the

maximum number of fact fragments.

HP and BJI selection problem consists in selecting a HP

schema (PS) and BJI configuration (IC) that optimize the

execution cost of the workload Q with Size(IC)≤ S and N(PS)≤

W where Size(IC) and N represent the disk space occupied by

IC and the number of fact fragments respectively.

Based on this formalization, we note that this problem is a

combination of two difficult sub problems: index

configuration and partitioning schema selection (which are

known as NP-hard problems [4] [9]).

III. RELATED WORK

Most existing works propose isolated selection of HP [4] [2]

[21] [11] or BJI [1] [5] [28] [14] [26] [27]. Select one

technique is generally insufficient since some categories of

queries are not optimized with this selection. Therefore, few

research studies are dealing with simultaneous index and

horizontal partitioning selection [20] [7] [6] [16].

Stohr et al. [20] propose a combination of horizontal

partitioning with bitmap join index and parallel processing for

the design of parallel data warehouses. Their approach

requires only one attribute per dimension table to be used in

the partitioning of the fact table. The BJI selection is done on

HP unused attributes. This fact results a large number of

candidate indexes.

 In [7], the authors propose to use HP to prune the search

space of BJI selection problem. Their proposal consists of

starting by partitioning the data warehouse, and then selecting

the BJI set to optimize the queries that do not get benefit from

HP (called non benefit queries).

Bouchakri et al. [6] propose to use the clustering algorithm k-

means to share all selection attributes extracted from the query

workload between HP and BJI and then select each

optimization technique with a genetic algorithm.

Finally, the authors in [16] have proposed a combined

selection of HP and BJI based on multi-agent system. Their

approach is composed of set of agents. One of those agents is

responsible to share the selection attributes between the

optimization techniques based on the work of [6]. The

selection of each technique is provided by a set of agents using

a genetic algorithm.

Existing studies related to HP and BJI are consisting to assign

each candidate selection attributes to a single optimization

technique at once. However, this strategy may leads, in some

cases to insufficient optimization. To illustrate this, we

suppose a data warehouse start schema composed of fact table

Sales, and three dimension tables: Product, Customer and

Time. Let's assume that we partition the table Customer into

two partitions according to the attribute City as follow:

 Customer1=σ(City=Ouargla)(Customer)

 Customer2=σ(City≠Ouargla) (Customer)

Then we partition the table Sales into two partitions

(referential partitioning):

 Sales1=Sales ⋉ Customer1

 Sales2=Sales ⋉ Customer2

Where ⋉ represents the semi-join operator. Let's suppose that

the partition Sales1 contains 10% of Sales tuples and Sales2

contains the rest (90%). Let's suppose a query containing the

predicate City='Oran', where 'Oran' is another city and 5% of

sales that have been sold to customers living in 'Oran'. To

execute this query, all tuples of the partition Sales2 must be

loaded in memory (90% of Sales tuples), which will generate a

high cost. To reduce it, it will be interesting if we select a BJI

index on the attribute City. Using this index, only tuples

referencing the city 'Oran' are loaded (5%). In all related work

cited above, if the attribute City is used to fragment the data

warehouse, it cannot be used in BJI selection process. These

approaches concentrate on the selection attributes to optimize

the queries workload. We believe that it will be important to

focus on queries and not attributes by sharing them between

HP and BJI in order to define the best technique to use for a

given query according to some factors. In addition, our

approach allows the use of the same attribute to fragment and

index the data warehouse at the same time in order to improve

the performance, which is impossible in existing works.

IV. OUR APPROACH

We propose, in this paper, a new approach for the combined

selection of HP and BJI using data mining techniques. The

general architecture of our selection process is shown in

Figure 1.

Figure1: Our approach architecture

Our approach is based on the classification of queries. It

consists of sharing the global query workload Q, with

unsupervised classification algorithm k-means, into two sub-

workloads named: HP_Workload and BJI_Workload. The

classification weight is calculated from two criterions: the

cardinality of selection attributes and the query selectivity.

We'll present in the following sections the detail of our

approach.

A. Query workload classification

In order to share the query workload between optimization

techniques HP and BJI, we have used the algorithm k-means

for unsupervised classification (clustering). This algorithm

Workload classification (K-means)

BJI sub-workload

Query workload

BJI set selection

BJI Unused

attributes

BJI
Config

IC

Additional BJI

configuration
selection(IC2)

Final BJI Configuration

R

E

F
I

N

I
N

G

HP schema selection

HP Non benefit

queries

HP sub-workload

HP

Schema

uses, a distance such as the Euclidean distance as an intra-

class distance. Depending on the number of iterations, k-

means recalculates the two centers and reassigns every query

to the suitable class according to the distance. To adapt this

algorithm to our need, we have considered the following:

 The data to classify are the queries of the query

workload Q.

 Parameter k of k-means is fixed to 2.

 Queries are classified into two classes: BJI_Workload

and HP_Workload.

 The queries are represented in two-dimensional

space. There coordinates are based on a classification

weight to determine for each query, if it will be

optimized by HP or BJI.

The weight of a given query Qi is based on two important

factors: the cardinality of selection attributes (CAR) and query

selectivity (SEL). The classification weight is given by

formula below:

Weight(Qi)= CAR(Qi) + SEL(Qi)

Attributes Cardinality CAR: It represents is the sum of the

cardinalities of the selection attributes used in Qi.

Where ||Ai|| represents the cardinality of the attribute Ai and m

is the number of selection attributes in Qi. The cardinality of

an attribute is a very important factor for the selection of a

BJI. Depending on it, indexing may be more or less efficient.

If the cardinality is very large, an index degenerates toward a

sequential scan (of the index structure itself) [22]. For this, we

considered that if the sum of a query attributes cardinalities is

small, the BJI are more appropriate to optimize this query.

Otherwise, the HP is better.

Query Selectivity (SEL) : It represents the fraction of selected

table tuples during the query execution. In this paper, we focus

on selectivity of queries on the fact table. Let us consider the

query Q1 introduced a simple selection predicate as follows:

Q1: Select Count (*) From Sales S, Product P Where S.Pid =

P.Id And P.Brand ='BMW'.

The selectivity of Q1 is related to the predicate

P1(P.Brand='BMW'). It is equal to the number of tuples of the

fact table Sales that involve the predicate P1. The general form

of the calculation of a given predicate selectivity Pi sets to a

dimension table Dj and required a join operation between Dj

and the fact table is given by:

Sel(Pi)=

Where: ||F|| represents the number of tuples of the fact table F.

Let's suppose that the number of selected rows is 71600 tuples

and the size of the fact table Sales is ||Sales|| = 6 millions. The

selectivity of Q1 is equal to:

SEL(Q1)=Sel(P1)=

In the example above, we have calculated the query selectivity

if it contains a single selection predicate of the form Ai =

value. In the case where Qi contains several selection

predicates (which is the case for star join queries), the

selectivity is depending on the operators connecting these

predicates. The majority of RDBMS consider that if the

conditions in a query are independent, the selectivity of each

condition can be calculated separately. This logic works

globally if the attributes are independent but when they are

correlated, the results are wrong. Note that this problem can be

avoided with the use of dynamic sampling[13].

The indexes provide a best gain in queries with high

selectivity because they select a small number of tuples, and

therefore access to a high number of tuples is avoided. We

conclude that queries with high selectivity encourage

indexing. However, queries with a low selectivity encourage

partitioning.

We have noticed that the values for each factor had a different

scale. For the criteria CAR, which represents the attributes

cardinality, let's suppose that the cardinality of the attribute

City is 60. However, the query selectivity is expressed as a

value between 0 and 1. The direct sum of these two factors

shows that CAR is the dominant factor. To get the

classification weight consistent, we have performed a

normalization of values. We propose to transform each factor

values so they follow the standard normal distribution with

average 1 and standard deviation 0. Let's consider G to be a

sample composed of 1, 2,..., n. Each element of G is

calculated as follow:

Where: m is the average and e is the standard deviation

formulated as:

e=

For example, let's consider a set of query {Q1,.....,Q10}

chosen randomly form our query workload, the calculation of

their weight is presented in table 1.

Query Selectivity

(SEL)

Cardinalities

sum(CAR)

Normalized

SEL

Normalized

CAR

Weight

Q1 0.058 12 -1.75 -1.94 -3.69

Q2 0.29 4 4.65 -2.067 2.588

Q3 0.22 6 2.739 -2.03 0.70

Q4 2.98E-5 182 -3.36 0.697 -2.67

Q5 3.68E-5 167 -3.36 7.45 4.085

Q6 0.23 4 2.97 -2.06 0.909

Q7 9.039E-5 121 3.365 -0.25 -3.61

Q8 0.176 4 1.48 -2.067 -0.58

Q9 0.245 4 3.367 -2.067 1.299

Q10 4.172E-7 4,17 -3.368 4.346 0.978

Table1: Queries weight calculation

After applying the algorithm k-means, we have obtained two

sub-worload: HP_Workload {Q2,Q3,Q5,Q6,Q8,Q9 ,Q10} and

BJI_Workload {Q1,Q4,Q7}.

B. Partitioning schema selection

To select the partitioning schema, we have used the approach

proposed in [4]. It consists in extracting the selection

predicates and then decompose the domain of each selection

attribute into K sub-domains. The sub-domain Sdi where

i={1...K-1} corresponding to the attribute values used by the

workload (HP_Workload in our case). The last sub-domain

Sdk corresponds to all remaining values. In addition, this

strategy is based on a particular coding of partitioning schema

where each partitioning schema is represented by a

multidimensional array and each row represents an attribute

and its sub domains. The value of each cell of a given array

representing an attribute is within (1...ni), where ni represents

the number of sub-domains of the attribute Ai. The cells with

the same value will be grouped in the same partition. If all the

sub domains of an attribute have the same value, the attribute

will not participate in the partitioning process. Finally, a

genetic algorithm (GA) is used to select a near-optimal

partitioning schema. Each chromosome has composite genes

and each composite gene contains n simple genes. A

composite gene in our case represents all sub-domains of a

selection attribute extracted from HP_Workload, whereas a

gene is a sub-domain.

The GA apply three genetic operations: selection, crossover

and mutation, to transform the initial population of

chromosomes, with the objective to improve their quality.

The evaluation of a problem solution represented by a

chromosome is performed with an objective function (fiteness)

based on a cost model. This cost model is mainly based on the

advanced model proposed by the authors in [4]. This model is

used to calculate the number of Input/output needed to run a

query.

Algorithm 1:Genetic algorithm

Begin

1. Random generation of a population contains m chromosomes X

2. Evaluation of each chromosome's fitness f(X)

3. Create new population

- Select 2 parents chromosomes

- Crossovers the 2 parents with specific probability Tc to obtain

2 children.

- Select and mutate a chromosome with specific probability Tm.

- Add new chromosomes to the population

4. Compose the new population

5. If the population isn’t sufficient repeat from step 2

End

C. Index set selection

The BJI selection method we propose (see Figure 2) exploits

BJI_Workload. It bases on closed frequent itemsets extraction

technique. It involves three main steps:

 Elaboration of the extraction context: A syntaxical

analysis of BJI_Workload must be conducted in this

step to extract the set of attributes in selection and

join predicates. We build after that a "query-attribute"

matrix whose rows and columns represent

respectively queries of BJI_Workload and the

extracted attributes. The j
th

 case of row i in the matrix

is set to 1 if the query Qi uses the attribute Aj , and it

is set to 0 otherwise.

 Candidate indexes construction: To prune the search

space of the BJI selection problem, we use the

algorithms: Close [17], Charm [25], DynaClose [5],

DynaCharm [5]. The algorithms Close and Charm are

using to extract closed frequent itemsets (CFIs),

whereas DynaClose, DynaCharm present an

adaptation of Close and Charm respectively. We

eliminate from the set of CFIs those that cannot

generate a bitmap join index. For example, a CFI

which does not contain non-key attribute of a

dimension tables will be deleted.

 Index set selection: We use, in this step, a greedy

algorithm to scan the search space of candidate

indexes under the storage space constraint S. The

selection of the index set is based on the cost model

proposed by Aouiche et al. in [1]. A candidate index

I, will be added to the final BJI configuration if it

minimizes the execution cost of Q.

Figure2: BJI selection process

V. REFINING THE OPTIMIZATION

In order to improve the optimization, we propose as a refining

step to select an additional BJI configuration IC2 that

optimizes the non-benefit queries of the partitioning schema

PS. A query is called benefit of partitioning if his execution

cost is significantly reduced after the partitioning. To quantify

the cost reduction, we used a metric called reduction rate (R).

This rate is calculated for a given query Qj as follows:

We gave the possibility to the administrator to fix a threshold

), from which he considered a given query benefit

of the partitioning process or not. It can be formulated as

follows:

Query Workload

Query-attribute matrix

 (Extraction context)

Index configuration

Frequents closest itemsets

Candidates Indexes

Cost model

It is very important to know if a query is benefit or not. When

a query was a benefit query, the administrator considers that it

is not necessary to apply an additional index selection to

optimize here cost.

The selection of IC2 must respect the space constraint S'

where S'= S-Size(IC).This refining step allows making the

most of the storage space devoted to indexes, and thus

ensuring better optimization of the overall workload.

VI. EXPERIMENTAL STUDY

To validate our approach, we have used a real data warehouse

generated from the benchmark APB-1 release II [15] in

Oracle11g. The star schema that we have identified from this

benchmark consists of a fact table Actvars (24786 000 tuples),

and four dimension tables: Prodlevel (9000 tuples), Custlevel

(900 tuples), Timelevel (24 tuples) and Chanlevel (9 tuples).

We used a query workload composed of 55 queries defined on

12 selection attributes. To show the effectiveness of our

approach, we conducted the evaluation of the following four

approaches: (a) without optimization techniques, which we

call WOT,(b) HPOnly: only HP is used, (c) BJIOnly: only BJI

are selected without partitioning and (d) HP-BJI: our

approach. We compare these scenarios with the work

proposed by Bouchakri et al. [6] (noted as HP-BJI-B). This

approach is based on selection attributes classification. We

used in this approach the GA for HP schema selection and a

greedy algorithm to select the BJI set. In our experimental

study, we have used the Oracle Optimizer to estimate the real

execution cost of the workload. The Optimizer uses Explain

Plan statement to estimate the execution cost. For example for

a given query Qi where:

Qi: Select * From Table Where Attribute = 'Value'. It is

possible to estimate the cost of execution of Qi through the

following two SQL commands:
 EXPLAIN PLAN SET STATEMENT_ID = 'Qi' FOR SELECT *

FROM table WHERE Attribute = 'Value'

 SELECT Cost FROM plan_table WHERE STATEMENT_ID =

'Qi'

The first command displays the execution plan chosen by the

optimizer to execute Qi and then estimate the cost of execution

of Qi. This cost is stored in the Cost column of the system

table plan_table and it is extracted by running the second

command.

To validate our approach, we have conducted several

experiments. In the first experiment, we varied W (maximal

number of fact fragments) from 40 to 300. We used the

algorithm Close [19] for BJI set selection because the

experience shows that it presents the best results. For both HP-

BJI and HP-BJI-B, we fix the storage space's threshold S to

1GB. Figures 3, 4 show respectively the results of these

experiments and the cost reduction rate when executing the

query workload for the approaches HPOnly, HP-BJI and HP-

BJI-B.

The results indicated that our approach (HP-BJI) is more

efficient than the other approaches. It is better than HP-BJI-B

because of a large number of indexes that have been selected

(7-9 BJI) for HP-BJI which represents more than half of the

candidate indexes, while just (3-5) BJI are selected for HP-

BJI-B.

Figure 3: Comparison of HP-BJI and HPOnly.

This is due to the fact that HP-BJI-B does not take into

account the indexes defined on the attributes used in the

partitioning process.

Figure 4: Cost reduction rate

The results in Figure 4 have shown that we get an average

performance gain of more than 71% for our approach, which

is considered a significant improvement.

Figure 5: HP-BJI vs BJIOnly.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

40 70 90 100 130 200 300

I/
O

 N
u

m
b

e
r
 (

M
il

li
o
n

s)

Fragments Number (W)

HPOnly Vs HP-BJI(S=1GB)

WOT

BJIOnly

HPOnly

HP-BJI

HP-BJI-B

0

10

20

30

40

50

60

70

80

40 70 90 100 130 200 300

R
e
d

u
c
ti

o
n

 R
a

te
 (

%
)

Fragments Number (W)

Execution Cost Reduction Rate (S=1GB)

HP-BJI

HP-BJI-B

HPOnly

BJIOnly

0

1

2

3

4

5

I/
O

 N
u

m
b

e
r
 (

M
il

li
o
n

s)

Space S(MB)

BJIOnly vs HP-BJI (W=200,S=1GB)

HP-BJI
BJIOnly
WOT
HP-BJI-B

We compared, in the second experiment, our approach with

BJIOnly and HP-BJI-B. We set W to 200 and we varied S

from 100 to 6000MB.The results presented in Figure 5 show

that our selection process HP-BJI is more efficient than HP-

BJI-B and BJIOnly. For more than 800MB HP-BJI and HP-

BJI-B are getting stable. This is due in the fact that the greedy

algorithm cannot select other BJI which can present an

improvement to the workload execution cost.

VII. CONCLUSION

We proposed in this paper a new approach based on data

mining algorithms to reduce the complexity of HP and BJI

combined selection's problem. The first data mining algorithm

(k-means) is used to share the query workload into two sub-

workloads. Each sub-workload is assigned to an optimization

technique process (HP or BJI) according to classification

criterions. The algorithms Close [17], Charm [25] to extract

closed frequent itemsets with DynaClose [5] and DynaCharm

[5] are implemented to be used for BJI configuration selection

in order to optimize the global workload's execution cost. We

used also a genetic algorithm for HP schema selection. This

algorithm has been widely used in data mining applications

such as classification, clustering, feature selection, association

rules [23], etc. To validate our approach, we conducted several

experiments on a benchmark on Oracle 11g. The experimental

results are encouraging and have demonstrated the

effectiveness of our approach. To improve this work, we think

to propose a dynamic approach that adapts to recurrent

changes in the workload, the data or the problem constraints to

ensure continuous optimization.

REFERENCES

[1] Aouiche, K., Darmont, J., Boussaid, O., Bentayeb, F.: Automatic
selection of bitmap join indexes in data warehouses. In: 7th International
Conference on Data Warehousing and Knowledge Discovery (DaWaK
05), Lecture Notes in Computer Science, pp 64-73, Denmark (2005).

[2] Barr, M., Bellatreche, L.: A new approach based on ants for solving the
problem of horizontal fragmentation in relational data warehouses. In:
International Conference on Machine and Web Intelligence (2010).

[3] Bellatreche, L., Boukhalfa, K., Alimazighi, Z.: SimulPh.D.: A Physical
Design Simulator Tool. In: 20th International Conference on Database
and Expert Systems Applications (DEXA'09), LNCS, (2009).

[4] Bellatreche, L., Boukhalfa, K., Richard, P.: Data partitioning in data
warehouses: Hardness study, heuristics and oracle validation. In:
International Conference on Data Warehousing and Knowledge
Discovery (DaWaK'2008), pp. 87-96 (2008).

[5] Bellatreche, L., Missaoui, R., Necir, H., Drias, H.: A data mining
approach for selecting bitmap join indices. JCSE 1(2), pp. 177-194
(2007).

[6] Bouchakri, R., Bellatreche, L., Boukhalfa, K.: ODAG: Optimisation des
requetes décisionnelles basée sur le Datamining et les algorithmes
génétiques. Doctoriales STIC'11(2011).

[7] Boukhalfa, K., Bellatreche, L., Alimazighi Z.: HP&BJI: A combined
selection of data partitioning and join indexes for improving OLAP
performance. Annals of Information Systems, Special Issue on new
trends in data warehousing and data analysis, pp. 179-2001. Springer
(2008).

[8] Boukhalfa, K.: De la conception physique aux outils d'administration et
de tuning des entrepôts de données. PhD thesis, University of Poitiers
(2009).

[9] Chaudhuri, S.: Index selection for databases: A hardness study and a
principled heuristic solution. IEEE Transactions on Knowledge and Data
Engineering, vol. 16(11). pp. 1313-1323 (2004).

[10] Chaudhuri, S., Narasayya, V.: AutoAdmin 'What-if' Index Analysis
Utility. In: Proceedings of the ACM International Conference on
Management of Data (SIGMOD), pp. 367-378 (1998).

[11] Gacem, A., Boukhalfa K.: Very Large Workloads Based Approach to
Efficiently Partition Data Warehouses. In: proceeding of the 4th
International Conference on Computer Science and Its Applications
(CIIA 2013). LNCS. Springer-Verlag (2013).

[12] Inmon, W. H.: Building the Data Warehouse. John Wiley (1992).

[13] Navarro, L.: Optimisation des bases de données Mise en œuvre sous
Oracle. Pearson editor (2010).

[14] Necir, H.: A data mining approach for efficient selection bitmap join
index. In: International Journal of Data Mining Modeling and
Management vol. 2(3), pp. 238-251(2010).

[15] OLAP Council. Apb-1 Olap benchmark release II,
http://www.olapcouncil.org/research/resrchly.html

[16] Ouared, A., Boukhalfa, k., Bellatreche L.: La Contribution des Agents
pour la Conception Physique des Entrepôt de Données Relationnels. In:
Second national conference (JEESI'12). Algeria(2012).

[17] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent
closed itemsets for association rules. In: Proceedings of the 7th
International Conference on Database Theory, ICDT '99, pp. 398-416,
London (1999).

[18] Sanjay, A., Narasayya, V. R., Yang, B.: Integrating Vertical and
Horizontal Partitioning Into Automated Physical Database Design. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 359-370 (2004).

[19] SPMF(sequential pattern mining framework). http://philippe-fournier-
viger.com/spmf/.

[20] Stöhr T., Märtens H., Rahm E.: Multidimensional database allocation for
parallel data warehouses. In: Proceedings of the International
Conference on Very Large Databases, pp. 273-284 (2000).

[21] Tekaya, K., Abdelaziz, A., Habib, O.: Data mining based fragmentation
technique for distributed data warehouses environment using predicate
construction technique. Networked Computing and Advanced
Information Management. pp. 63-68. (2010).

[22] Vanichayobon, S., Gruenwald, L.: Indexing techniques for data
warehouses'queries. Technical report, University of Oklahoma, School
of Computer Science (1999).

[23] Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for
identifying association rules without specifying actual minimum
support. Expert Syst. Appl. 36(2), pp. 3066-3076(2009).

[24] Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view
design in data warehousing environment. In; Proceedings of the
International Conference on Very Large Databases, pp. 136-145 (1997).

[25] Zaki Mohammed, J., Hsiao, C.J.: Charm : An efficient algorithm for
closed itemset mining. In: Proceedings of the Second SIAM
International Conference on Data Mining, pp. 457-473, Arlington
(2002).

[26] Ziani, B., Ouinten, Y.: Vers l'auto-sélection des index dans les entrepôts
de données : une approche basée sur la recherche des motifs fréquents
maximaux. CARI2010. pp. 301-308, Yamoussoukro (2010).

[27] Ziani, B., Rioult, F., Ouinten, Y.: A constraint based mining approach
for multiattribute index selection. In: 14th International Conference on
Enterprise Information Systems, pp. 93-98. SciTePress (2012).

[28] Ziani, B., Benmlouka, A., Ouinten, Y.: Improving Index Selection
Accuracy for Star Join Queries Processing: An Association Rules Based
Approach. Advances in Intelligent Systems and Computing, vol. 220, pp
67-74 (2013).

[29] Zilio, C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-
Arellano C., and Fadden S.: DB2 design advisor: integrated automatic
physical database design. In Proceedings of the Thirtieth international
conference on very large data bases (VLDB '04), pp. 1087-1097 (2004).

http://www.olapcouncil.org/%20research/resrchly.html
http://philippe-fournier-viger.com/spmf/
http://philippe-fournier-viger.com/spmf/

